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OBJECTIVES

• Develop a satellite-based icing detection methodology that can
be applied operationally with results provided in a timely manner
as part of an integrated icing product for the aviation community

•!Use satellite data to provide near-real time cloud-top & base
altitudes for aviation weather applications
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OUTLINE

• DESCRIPTION OF METHODOLOGY AND CLOUD PRODUCTS

(Minnis)

•!RELATING AIRCRAFT ICING TO SATELLITE CLOUD PARAMETERS

(Smith)

• DEMONSTRATION OF PROTOTYPE PRODUCT

(Minnis) 
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APPROACH
• Use cloud properties currently being derived from

satellite data at various time and space scales and relate
them to aircraft icing

 -Developed & applied algorithms to various satellite (GOES, 
AVHRR, etc.) data for field programs for climate research

- Currently deriving global cloud and radiation parameters from EOS
sensors for global change studies as part of the Clouds and Earth’s
Radiant Energy System (CERES) Experiment  post processing

- Applying similar algorithms to 4-km GOES data to derive cloud and
radiation parameters for DOE ARM program over SGP,  for NASA
CRYSTAL(FL), Icing (Midwest) running experimentally in R/T
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EFFECTIVE RADIATING TEMP Tc
EFFECTIVE HEIGHT, PRESSURE Zc, pc
TOP PRESSURE, HEIGHT  pt, zt

THICKNESS h

EMISSIVITY e

PHASE (water or ice; 1 or 2) P
WATER  DROPLET EFFECTIVE RADIUS re
OPTICAL DEPTH t

LIQUID WATER PATH LWP
ICE EFFECTIVE DIAMETER De
ICE WATER PATH IWP

PIXEL-LEVEL CLOUD PROPERTIES

Blue indicates utility for icing
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ICING

ICING CONDITIONS ARE DETERMINED BY CLOUD
• liquid water content, LWC  positive w/ intensity
• temperature, T(z) negative w/ intensity
• droplet size distribution, N(r) r positive w/ intensity

SATELLITE REMOTE SENSING CAN DETERMINE CLOUD
• optical depth, t
• effective droplet size, re
• liquid water path, LWP
• cloud top temperature, Tc
• thickness, h

IN CERTAIN CIRCUMSTANCES
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• LWP = LWC * h

• re = f[N(r)]

• Tc & h can yield depth of freezing layer

• zt is top of icing layer

• ceiling =  zt - h

IN MANY CASES, SATELLITE REMOTE SENSING
 SHOULD PROVIDE ICING INFORMATION

CLOUD PRODUCTS VS. ICING PARAMETERS
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DATA
- GOES-8  IMAGER (4KM RESOLUTION)    75° W

Visible    (0.63 µm; ch.1)
Solar Infrared (3.9 µm; ch.2)
IR Window (10.8 µm; ch.4)
Split Window (12.0 µm; ch.5) (G-12: 13.3 µm)

       Visible Channel Calibrated Following Minnis et al. 2002

- Rapid Update Cycle (RUC) 20 km x 20 km hourly analyses

- surface air temperature => skin temperature
- temperature & moisture profiles => absorption correction, heights

- CERES clear-sky albedo, surface emissivity (10', 1°)

clear-sky reflectance, brightness temperature => cloud detection/retrieval

- Theoretical cloud reflectance & emittance models

describes angular variation for range of re and t => cloud detection/retrieval
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METHODOLOGY FOR EACH IMAGE TIME
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clear
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groups (tiles)
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CLOUD MASK
•!To detect clouds, the  radiances for cloud-free (clear) scene must be
known

• Determine clear-sky albedos and surface emissivities after initial
processing of data 

- start with CERES values and update

• Use RUC surface temperatures & profiles to estimate clear-sky
brightness temperatures

• Must account for angular dependence: bidirectional reflectance
models to estimate clear-sky reflectance for each pixel

• Estimate thresholds based on uncertainties in models &
spatial/temporal variability of the clear radiances
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CLEAR-SKY RADIANCE CHARACTERIZATION

• Predict radiance a given satellite sensor would measure for each 
channel if no clouds are present

• Estimate uncertainty based on spatial & temporal variability 
& angular model errors

• Develop set of spectral thresholds for each channel
- Solar, uses reflectance, r
- IR, use temperature, T
               brightness temperature difference, BTD = Tl1 -Tl2

  typically, BTD(3.7-11) or BTD(11-12)
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CLEAR-SKY REFLECTANCE, SOLAR
• Estimate overhead-sun albedo, ao = a(µo = 1)

derived empirically with initial runs usingCERES VIRS data,
then updated for each month using GOES

• Estimate albedo at given local time, a(µo) = ao do(µo)
directional reflectance model do(µo) derived for each IGBP type using VIRS 

• Estimate reflectance for given viewing angles, r(µo, µ, f) = a(µo) c(µo, µ, f)
bidirectional reflectance (BRDF) model c selected for each surface type
   from Kriebel (1978), Minnis & Harrison (1984), Suttles et al. (1988)

• Add uncertainty to set reflectance threshold, rT(µo, µ, f) = r + Dr(µo, µ, f)
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PREDICTED CLEAR-SKY & OBSERVED VIS REFLECTANCE & CLOUD MASK
1700 UTC,12/21/00
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CLEAR-SKY TEMPERATURE, INFRARED
• Estimate surface emissivity, es(x,y)

derived empirically with using ISCCP AVHRR DX, VIRS, then Terra MODIS;
water & snow theoretical models

• Estimate radiance leaving the surface, Ls = esB(Tskin) + (1-es)Lad 
Lad = downwelling atmo radiation, Tskin = skin temperature from model / obs

• Estimate TOA brightness temperature, B(Tcs) = (1-ea)Ls + ea Lau

Lau = upwelling atmo  radiation, ea = effective emissivity of atmo
   layer absorption emission computed using T/RH profile, correlated k-dist

• Add uncertainty to set T or BTD thresholds, TT(µ) = Tcs(µ) + DT(µ)

- reflected solar component included in 3.7-4.0 µm estimate
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PREDICTED CLEAR-SKY  & OBSERVED IR TEMPERATURE
1700 UTC,12/21/00
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PREDICTED CLEAR-SKY  & OBSERVED BTD (3.7 - 11)
1700 UTC,12/21/00
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STANDARD DAYTIME MASK ALGORITHM
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CERES CLOUD MASK 1700
UTC,12/21/00



 

NASA Langley Research Center / Atmospheric Sciences
FAA In-flight Icing/Ground De-icing International Conference, Chicago, IL, June 16-20, 2003

STANDARD NIGHTTIME MASK ALGORITHM
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CERES CLOUD MASK & BTD(3.7 - 11) REFLECTANCE 0400 UTC,12/01/00
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DAYTIME CLOUD RETRIEVALS

•VISST (Visible, infrared, solar-infrared, split-window 
    technique)

- physically based method using 0.65, 3.7, 11, & 12 µm
- for cloudy pixels, match radiances to model values

• Yields more accurate cloud temperatures than simpler
methods

- adjusts temperature (altitude) of thin clouds

• Provides basis for determining phase

- in most cases, ice & water models are distinct
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Daytime Cloud Property Retrievals

• Derive cloud properties by matching observed radiances to model calculations
for water droplets (2 < re < 32 mm) and ice crystals (6 < De < 135 mm)
through reflectance and emittance parameterizations

• 3.9 mm (GOES Channel 2) used for particle size retrieval

• Particle phase determined by:
– (1) Best available model solution (2) T10.8 - T12.0 Difference
– (3) Visible/IR Layer Retrieval (4) Retrieved Cloud Temperature

Cloud Tau, phase, re (De), LWP (IWP), Zcld , Tcld
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Cloud properties
from GOES-8

1815 UTC

March 3, 2000
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Cloud mask & optical
depths from GOES-8

1815 UTC

March 3, 2000
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Cloud droplet radius &
LWP from GOES-8

1815 UTC

March 3, 2000
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Cloud-top temperature
& height from GOES-8

1815 UTC

March 3, 2000
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ARM-Sponsored Comparisons (March 2000)


